首页> 外文OA文献 >On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition
【2h】

On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition

机译:用适当的广义分解确定多维参数模型的确定性解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper focuses on the efficient solution of models defined in high dimensional spaces. Those models involve numerous numerical challenges because of their associated curse of dimensionality. It is well known that in mesh-based discrete models the complexity (degrees of freedom) scales exponentially with the dimension of the space. Many models encountered in computational science and engineering involve numerous dimensions called configurational coordinates. Some examples are the models encoun- tered in biology making use of the chemical master equation, quantum chemistry involving the solution of the Schrödinger or Dirac equations, kinetic theory descriptions of complex systems based on the solution of the so-called Fokker–Planck equation, stochastic models in which the random variables are included as new coordinates, financial mathematics, etc. This paper revisits the curse of dimensionality and proposes an efficient strategy for circumventing such challenging issue. This strategy, based on the use of a Proper Generalized Decomposition, is specially well suited to treat the multidimensional parametric equations.
机译:本文关注于在高维空间中定义的模型的有效解决方案。这些模型因其相关的维数诅咒而涉及许多数值挑战。众所周知,在基于网格的离散模型中,复杂度(自由度)与空间的尺寸成指数关系。计算科学和工程学中遇到的许多模型涉及称为配置坐标的众多维度。例如,利用化学主方程在生物学中建立的模型,涉及薛定ding方程或狄拉克方程的量子化学,基于所谓福克-普朗克方程解的复杂系统动力学理论描述,随机模型,其中将随机变量包括为新坐标,金融数学等。本文重新审视了维度的诅咒,并提出了一种有效的策略来规避此类挑战性问题。该策略基于使用适当的广义分解,特别适合于处理多维参数方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号